1 Induction

1.1 Examples

1. Prove that $5^{2 n+1}+2^{2 n+1}$ is divisible by 7 for all $n \geq 0$.
2. Find a formula for

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\cdots+\frac{1}{(2 n-1)(2 n+1)}
$$

for $n \geq 1$

1.2 Problems

3. True False If we want to prove S_{n} for all $n \geq 10$, then our base case would be $n=10$.
4. True False When using induction, if we can show that if S_{100} is true, then S_{101} is true, then S_{n} must be true for all n.
5. True False Instead of assuming S_{n} is true and showing that S_{n+1} is true, we can instead assume that S_{n-1} is true and prove that S_{n} is true.
6. Prove that $n^{3}+2 n$ is divisible by 3 for all integers $n \geq 0$.
7. Find a formula for

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\cdots+\frac{1}{n(n+1)} .
$$

8. Prove that for $n \geq 1$

$$
1+4+7+\cdots+(3 n-2)=\frac{n(3 n-1)}{2}
$$

9. Prove that $6^{n}-1$ is divisible by 5 for $n \geq 1$.
10. Prove that $1!\cdot 1+2!\cdot 2+3!\cdot 3+\cdots+n!\cdot n=(n+1)!-1$. for all $n \geq 1$.
11. Prove that $1 \times 2+2 \times 3+3 \times 4+\cdots+n \times(n+1)=\frac{n(n+1)(n+2)}{3}$ for all $n \geq 1$.
12. (Challenge) Let the Fibonacci numbers be defined as $F_{1}=F_{2}=1$ and $F_{n+2}=F_{n}+F_{n+1}$. Then show that

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

2 Probability

2.1 Examples

13. Assume that a telephone number is a 7 digit number that does not begin with 0 or 1 . If I pick a random telephone number, what is the probability that it begins with a 9 or ends with a 0 ? What is the probability space?
14. In the 3 classes I'm taking, each has 3 HW assignments that have to be done in order (for a total of 9 HW assignments). If I randomly pick an order to do these 9 HWs , what is the probability that I actually do each of the 3 HWs in order?

2.2 Problems

15. True False The probability function P takes outcomes and outputs a probability for that outcome.
16. True False When calculating the probability of an event $A \subset \Omega$, we can always take $P(A)=|A| /|\Omega|$.
17. I roll 46 -sided die. What is the probability that the sum of the numbers rolled is 7 ?
18. I am giving out grades to 60 students randomly (A, B, C, D, F). What is the probability that at least half the class got A 's?
19. Out of the 14 pants that I own, there are 5 of them that are white. Every day for two weeks, I randomly put on a new pair of pants. What is the probability that I won't wear white pants two days in a row?
20. I pick a random 5 digit number. What is the probability that its digits are in increasing (could be repeating) order?
21. I roll 5 die for Yahtzee. What is the probability that I get a 5 in a row?
22. I pick 3 numbers a, b, c (not necessarily different) numbers from $\{1,2,3,4,5,6,7,8,9,10\}$. What is the probability that $a b+c$ is even?
